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Abstract: Although deep learning methods have made great progress in synthetic aperture radar (SAR)-based remote sensing,
lack of training data has often been the major obstacle while they are adopted for SAR automatic target recognition. In this
study, a new deep network in the form of a restricted three-branch denoising auto-encoder (DAE) is proposed to take the full
advantage of limited training samples. In this model, a modified triplet restriction that combines the semi-hard triplet loss with the
intra-class distance penalty is devised to learn discriminative features with a small intra-class divergence and a large inter-class
divergence. Besides, the reconstruction distortion is measured between the model outputs and the images filtered by the
improved Lee Sigma filter rather than the original inputs to suppress clutter in the background. Furthermore, a batch-based
triplet loss, which calculates the modified triplet loss in a batch-based manner, is proposed to tackle the difficulties in
implementation and reduce its computation complexity. The simplified version of the three-branch Triplet-DAE is subsequently
devised as a one-branch DAE restricted by the batch-based triplet loss. Experimental results with the MSTAR data demonstrate
the effectiveness of the proposed method on real SAR images.

1 Introduction
As the crucial task of automatic target recognition with synthetic
aperture radar images (SAR ATR), feature engineering is aimed at
finding discriminative features to distinguish objects in high-
resolution SAR images [1, 2]. Although numerous papers have
been published in the past decades, it is still a challenging task
because of the complicated imaging mechanism, the increasing
resolution of images, the complicated structures of targets and the
complex land form of observing areas.

In general, the conventional hand-designed feature extraction
methods include two categories: the generalised methods and SAR-
specialised methods. The first type employs methods that have
been successfully applied in other domains, to generate features for
ATR considering few characteristics of SAR images [3–6]. The
other one utilises the estimated parameters of scattering models as
features for ATR [7–9]. Although these methods have achieved
good accuracies with the benchmark dataset, they suffer from
significant performance degradations when complicated situations
occur including complex scattering structures in higher-resolution
images, target distortion and speckle variation in complicated
observing environments and missing pose in the training data.
Accordingly, if these conditions are considered, it is necessary to
find new approaches that can adaptively learn features from
varying raw data [10].

With the recent theoretical progress, deep networks, which are
proving adept at mining intrinsic information from raw data, have
been introduced to SAR-based remote sensing tasks. Various deep
learning (DL) models such as the auto-encoder (AEs) [10], the
restricted Boltzmann machine (RBM) [11, 12] and the
convolutional neural network (CNN) [13–21], were introduced to
tackle with SAR image classification tasks and obtained
comparable or even better results in comparison with the state-of-
the-art results obtained by the hand-designed features. Motivated
by their success, new DL models were developed for better
performance and low computation complexity in SAR ATR.

Malmgren-Hansen et al. [22] utilised the simulated images with
various translations to train the translation invariant CNN. Andrew
et al. [23] developed a CNN initialised by the pre-trained LeNet
and trained it with augmented data created by resampling.
Kechagias-Stamatis et al. [24] divided the AlexNet into eight
clusters of layers, of which four trained clusters were employed to
learn the features. Wagner [25] combined the CNN with support
vector machine (SVM), providing a remarkable improvement for
the classification result. Despite these successes, insufficient data
and overfitting arising therefrom should be the main constraint on
their feature learning capability, bringing in performance
degradation when data with complex conditions are used.

On this account, various schemes are designed to deal with
problems caused by limited labelled training samples. Geng et al.
[26] devised an improved stacked AE (SAE) with reduced training
parameters where the first two hidden layers were fixed layers
successively computing the grey-level co-occurrence matrix and
the Gabor transformation. Li et al. [27] decomposed the CNN into
a series of convolutional AE and shallow neural networks, which
were trained separately so that the requirement for labelled samples
is decreased and the training speed is increased. Although it was
reported that the model worked well for MSTAR dataset, it is
obvious that using unsupervised AEs without restrictions as a
substitution for supervised CNN would lead to model deterioration.
Chen et al. [28] proposed an all-convolutional network (A-
Convnet), where the fully connected layers were replaced by the
convolutional layers to reduce the number of trainable parameters
and alleviate overfitting caused by insufficient training samples.
However, lack of sufficient experiments made it difficult to
evaluate whether the substitution of the fully connected layers
would affect the model's generalisation performance on other
datasets.

Data augmentation (DA) strategies were also devised to create
simulated training samples. Ding et al. [29] generated new training
samples (by translating, adding speckle and pose synthesis) to train
the CNN. Wagner et al. [30] and Wagner [31] employed similar
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schemes, where affine transformation and elastic distortion were
applied to produce additional samples. Even in the A-Convnet [28],
DA process that randomly generated the training patches from the
MSTAR dataset played a crucial role in alleviating overfitting
caused by insufficient samples. Despite its advantages of creating
sufficient and diversiform samples, the DA processes bring about
certain problems including the increased cost of computation and
the difficulties associated with determining the augmentation
configurations (i.e. the size of the augmented dataset and the
optimal manners of augmentation). Besides, the features learnt
from the augmented data can amplify the inconsistency between
the distribution of the measured dataset and that of the actual
problem. Accordingly, it is expected that schemes without much
man-made uncertainty can be devised. Deng et al. [32] proposed a
new AE model restricted by the Euclidean distance (ED-AE). The
restriction encouraged the intra-class distance of features to be a
small value near zero and the inter-class distance to be close to a
constant. Although the ED-AE is reported to have a significant
improvement over the classical AE, the inexplicable constant for
the inter-class distance made it difficult to be optimised.

In this paper, a new three-branch denoising AE (DAE)
restricted by a modified triplet loss [triplet-DAE (TDAE)] is
proposed for SAR ATR to take the full advantage of limited
training samples. The modified triplet loss that combines the semi-
hard triplet loss with the intra-class distance penalty encourages the
model to learn discriminative features with small intra-class
divergence and large inter-class divergence. Besides, the
reconstruction distortion of the proposed model is measured by
comparing the reconstructed data with the improved Lee Sigma
(ILS) filtered [33] inputs rather than the original inputs to suppress
the clutter and speckle in the background during training. A
simplified version of the proposed TDAE is also devised to reduce
the computation complexity and tackle with the difficulties in
implementation, which is in the form of a one-branch DAE
restricted by a batch-based triplet loss and the modified
reconstruction loss.

The rest of this paper is organised in four sections. Section 2
discusses the related work. In Section 3, the three-branch TDAE
and its one-branch simplified version will be discussed in detail.
Experimental results and comparison with other ATR methods are
shown and discussed in Section 4. Section 5 concludes this paper.

2 Related work
In this paper, the three-layer AE is utilised as the prototype of the
proposed model. The major reason for this is that it is one of the
simplest DL models, which is easy to be implemented and has
great potential for improvement. It has limited trainable parameters
in comparison with other complicated DL models that require less
training samples, especially when tied weights and dropout scheme
are used. Moreover, the multilayer networks can be conveniently
constructed by stacking the pre-trained three-layer AEs and fine-
tuning the parameters with limited samples. Furthermore, the
classical AE has much lower computation complexity than the
convolution-based architectures. In addition, the AE has a
dimensionality reduction capability that produces features in a
lower-dimensional space than the original data. In this section, a
brief introduction of related work on AE will be presented
including the principle of the AE, the SAE and the dropout scheme.

2.1 Principle of the three-layer AE model

As shown in Fig. 1, the three-layer AE is a symmetrical network
consisting of an encoder and a decoder. The encoder maps the
inputs into a representation space to generate the latent features
while the decoder approximately reconstructs the inputs from the
learnt features. The objective of the AE is minimising the distortion
between the inputs and the reconstruction to guarantee the mapping
process preserves the information of the inputs. 

Considering a dataset X = xi i = 1
N  with N samples, let the dv-

dimensional vector xi = xi
1, xi

2, …, xi
dv T

 be the ith sample. The
latent feature hi is generated by the encoder in the red-dashed line
box of Fig. 1, i.e.

hi = f en Wenxi + ben (1)

where Wen and ben are the dh × dv weight matrixes and the dh-
dimensional bias of the encoder, respectively; f en is the activation
function that is usually the sigmoid function or the rectified linear
unit (ReLU) function.

The decoder represented in the green-dashed line box of Fig. 1
subsequently maps the learnt representation back to the
reconstruction yi such that the reconstruction approximates the
input, i.e. yi ≃ xi. The decoder is formulated as

yi = f de Wdehi + bde (2)

where f de is the activation function of the decoder that can be the
sigmoid function, the linear function or the ReLU function; Wde
and bde are the dv × dh weight and the dv-dimensional bias of the
decoder, respectively. Specifically, if Wde = Wen

T  with ⋅ T being
the transpose operation, the weight is called tied. In this paper, the
tied weight is utilised. The AE is trained by finding the optimal
parameters θAE = Wen, ben, bde  that minimise the reconstruction
distortion JAE θAE  on the training dataset X, which is defined as

JAE θAE = 1
N ∑

i = 1

N
LR xi, yi (3)

where LR ⋅  is the reconstruction error of a given sample that is
usually the root-mean-square error (MSE) or the MSE. The
gradient descent algorithm is used to optimise the parameters by
minimising JAE θAE .

2.2 Stacking strategy and SAE

The hierarchical architecture of the SAE can be generated by
removing the decoders in the trained AEs and stacking the
encoders layer by layer. The structure of the SAE constructed by M
trained encoders is depicted in Fig. 2. The input data xi  in Layer 0
is fed to train the first encoder, i.e. the first hidden layer (Layer 1)
in the three-layer AE. Subsequently, the output hi

1  of Layer 1 is
utilised as the input to train the second hidden layer. In such a
manner, each hidden layer in the SAE is separately trained with the
output of the previous layer. Finally, we obtain the high-level
representation of the raw input as the output of the model, which is
reported to be more abstract and robust than those learnt by the
shallow models. 

2.3 Denoising scheme with dropout

Without any restrictions, the AE can possibly learn an identity
mapping and overfitting will frequently occur. It can be alleviated
by using the denoising scheme, which forces the AE to learn a
deterministic encoder–decoder pair by minimising the distortion
between the reconstructions and the interrupted inputs. There are
numerous schemes to generate contaminated inputs, among which
‘dropout’ is the most popular one. This scheme randomly removes
units along with all its incoming and outgoing connections in each
training epoch. Neurones that are dropped out do not contribute to

Fig. 1  Structures of the simplest AE
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the forward and backward procedures. This technique reduces the
complex co-adaptation of neurones and provides a manner of
approximately combining various neural network architectures
efficiently, thus overfitting is prevented. While utilising this
technique, the input xi = xi

1, xi
2, …, xi

dv T
 is randomly interrupted

by multiplying the masking vector r as follows:

x~i = xi r = xi
k rk

k = 1
dv (4)

where x~i is the interrupted version of xi; r = rk
k = 1
dv  is the masking

vector with rk ∼ Bernoulli p  being a Bernoulli random variable
which has a probability p of being 1. The objective function of the
AE with dropout (DAE) is

JDAE θDAE = 1
N ∑

i = 1

N
LR xi, y~i (5)

where y~i is the data reconstructed from x~i.

3 TDAE model
Although deep networks have superior performance over the
conventional feature extraction methods, lacking training data is a
major obstacle in SAR ATR tasks. DA can partly solve this
problem but it leads to additional computation complexity,
difficulties in scheme selection and the possibility of amplifying
the sampling bias in the training dataset. To overcome these
problems, the TDAE was proposed to take the full advantage of
limited training samples by introducing the supervised information.
Details on the proposed model are illustrated and discussed in this
section.

3.1 Modified triplet loss

Given a labelled dataset Dtrain
triplet = xi, li i = 1

N  with xi and li being the
ith sample and its label, respectively, the triplet loss is measured
based on the triplet Ti = xi, pxi, nxi  of xi. In the triplet, xi is the
anchor; pxi is the positive sample that has the same label as xi and

nxi is the negative sample which belongs to a different class of xi.
Feeding elements of Ti into the DAE separately, we can get the
triplet of the encoded features h

~
i
T = h

~
i, ph

~
i, nh

~
i  and the

reconstructed triplet y~i
T = y~i, py~i, ny~i . For classification tasks, it is

expected that h
~

i is more similar to the positive encoded feature ph
~

i

than the negative encoded feature nh
~

i. On this account, the
similarity measurement of the triplet in the margin ranking form is

LTriplet Ti = max 0, δi
+ + ξ − δi

− (6)

where ∥ ⋅ ∥2 is the ℓ − 2 norm; δi
+ = ∥ h

~
i − ph

~
i ∥2 is the distance

between the anchor and the positive sample in the feature space;
δi

− = ∥ h
~

i − nh
~

i ∥2 is the distance between the anchor and the
negative sample in the feature space; and ξ is the margin. As
illustrated in Fig. 3, for each triplet the restriction in (6) pushes the
feature learnt from the negative sample out of the circular region
(i.e. the golden circle) of the anchor determined by δi

+ and ξ, while
simultaneously pulls that learnt from the positive sample inside the
golden circle, thereby providing representations with larger inter-
class diversity than the intra-class diversity. 

A problem of the triplet loss in (6) is that if δi
+ + ξ − δi

− ≤ 0  for
a specific anchor, the triplet loss would have little contribution to
the learning process leading to performance degradation and
slower convergence. Hence, the anchor swap scheme is introduced
to solve this problem and a harder restriction called the semi-hard
triplet loss based on the scheme is

LTriplet
semi‐hard Ti = max 0, δi

+ + ξ − min δi
−, δi

∗ (7)

where δi
∗ = ∥ ph

~
i − nh

~
i ∥2 is the distance between the positive

sample and the negative sample in the feature space as illustrated in
Fig. 3. Accordingly, if δi

− > δi
∗, the anchor and the positive sample

are swapped, i.e. pxi is the anchor and xi is the positive sample.
This ensures that the harder inter-class distance is utilised in the
optimisation, and it improves the performance and the convergence
speed without computational overhead.

Another problem is that it does not restrict the samples
belonging to the same class close to each other, which is possible
to result in clusters with large intra-class divergence in the feature
space. In other words, the learnt features are susceptible to the
condition variations caused by object pose, heavy speckle and
occlusion. To solve this problem, the intra-class distance penalty is
employed to diminish largely δi

+, and the modified triplet loss
LTriplet

m  is

LTriplet
m Ti = αLTriplet

semi‐hard Ti + βδi
+ (8)

where α and β are the weights of the semi-hard triplet loss and the
intra-class distance penalty, respectively. The modified triplet
restriction in (8) guarantees that the learnt representation will be
discriminative features with large inter-class diversity and small
intra-class diversity.

3.2 Three-branch TDAE

The proposed TDAE model restricted by the modified triplet loss
in (8) is presented in Fig. 4. The TDAE consists of three branches
with shared parameters, i.e. the anchor branch, the positive branch
and the negative branch processing the corresponding element in
the input triplet Ti = xi, pxi, nxi , respectively. Elements in Ti are
processed simultaneously in similar encoding–decoding procedures
to generate the reconstructed triplet y~i

T = y~i, py~i, ny~i .
Subsequently, the reconstruction error is computed by averaging
the reconstruction errors of all the three branches using the output
triplet y~i

T. However, in most conditions, there are clutter and
speckle in the target patches extracted from large scenes which not
only have little information about the target but affect the
performance of the learnt features. Consequently, in order to

Fig. 2  Typical M-layer SAE constructed by stacking M encoders together
 

Fig. 3  Principle of how the triplet loss helps to learn the discriminative
features
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alleviate their influence, the reconstruction distortion of each
branch is measured by the ED between the output and the input
filtered by a 9 × 9 ILS filter ϕILS. The ILS filter is selected due to
its effectiveness in suppressing speckle and maintaining target
details [33]. Accordingly, the modified reconstruction loss is

LTriplet
R Ti = 1

3 ∑
z ∈ Ti

ẑ ∈ y~i
T ∥ z^ − ϕILS z ∥2 (9)

Binding the modified reconstruction error in (9) and the
modified triplet restriction in (8), the total loss of the proposed
TDAE with the input triplet Ti is

LTriplet‐DAE Ti = LTriplet
m Ti + LTriplet

R Ti (10)

When using the mini-batch approach to optimise the model, the
objective function of a batch with M triplets is

JTriplet‐DAE θTriplet = 1
M ∑

i = 1

M
LTriplet‐DAE Ti (11)

where θTriplet is the set of the trainable parameters in the proposed
model. The proposed model can then be trained by minimising (11)
utilising the gradient descent method. Once the model training is
finished, the encoder network of the anchor branch with trained
parameters can be utilised to extract features from the training
dataset and the test dataset. The learnt features are subsequently fed
to a classifier such as the SVM or the Softmax for object
classification as the classification stage of Fig. 4.

A vital task of the proposed model is to construct the training
set of triplets. Although traversing all the possible combinations of
samples will take the full advantage of the limited training samples,
it is infeasible due to a large amount of computation during the

model training stage. Accordingly, to strike a balance between the
computation complexity and the required triplets, a new strategy is
developed. At each iteration, every training sample is used as the
anchor for more than one time, which depends on the size of the
training dataset. Subsequently, for each anchor, positive images and
negative images are randomly selected from the rest of the
samples. To ensure that we have a good representation of every
class, an equal number of negative samples will be selected from
every other class with an anchor from one class. By traversing all
the training samples, the training set of triplets is generated.
Comparisons are carried out to remove triplets with similar
elements and new ones are added. Finally, shuffling the triplets in
the set and splitting the dataset into batches, the model is optimised
by the mini-batch gradient descent method (MBGD).

3.3 Batch-based simplified implementation of the TDAE

Although the TDAE guarantees that learnt features have a large
inter-class diversity and a small intra-class diversity, it is difficult
for it to be implemented utilising popular DL libraries due to the
triplets constructing procedure discussed above. Besides, it also
brings about high computation complexity since every sample will
be processed by the encoding–decoding procedure for several
times as different roles (i.e. the anchor, the positive sample and the
negative sample) at each iteration. To solve the problem, the batch-
based triplet loss is proposed while the MBGD is utilised to
optimise the model. By applying the batch-based restriction, the
encoding–decoding process is executed only once for each sample
in the training dataset at every iteration. In addition, a harder triplet
restriction combines the semi-hard positive batch-triplet loss and
the semi-hard negative batch-triplet loss is devised in a batch-based
manner. The simplified one-branch TDAE is illustrated in Fig. 5. 

While using the MBGD method, the training dataset is divided
into K batches and the trainable parameters are updated after
processing all samples in a batch at every iteration. Considering a
batch with M samples xi i = 1

M , the corresponding encoded features
are h

~
i i = 1

M  and the outputs of the decoder network are y~i i = 1
M . The

reconstruction loss of the batch-triplet restricted DAE is

Lrestricted
R xi = 1

M ∑
i = 1

M
∥ y~i − ϕILS xi ∥2 (12)

Fig. 4  Principle of the proposed three-branch TDAE
 

Fig. 5  Structure of the one-branch DAE restricted by the batch-based
triplet loss
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The batch-based triplet restriction can be computed by using the
encoded features h

~
i i = 1

M  and their labels l = li i = 1
M . Instead of

traversing all the triplet combinations in the batch, the triplet loss
can be calculated by applying a harder criterion that utilises both
the maximum intra-class distance and the minimum inter-class
distance. The pairwise distance matrix A = δi j i, j = 1

M  is calculated
at first, with δi j being the ED between the encoded feature h

~
i and

h
~

j. Subsequently, the mask matrixes of similar class pairs
Λsim = σi j i, j = 1

M  and the mask matrixes of different-class pairs
Λdiff = ρi j i, j = 1

M  are generated according to the labels,
respectively. In Λsim, σi j = 1 if and only if h

~
i and h

~
j belong to the

same class with i ≠ j. In Λdiff, the different-class pair ρi j = 1 if h
~

i

and h
~

j belong to different classes. Thereby the batch-based triplet
loss is

Lbatch‐triplet xi = αmax Lsim, Ldiff + βE σi jδi j (13)

where E ⋅  is the average operation; Lsim is the semi-hard positive
batch-triplet loss based on the minimum inter-class distance; and

Ldiff is the semi-hard negative batch-triplet loss based on the
maximum intra-class distance

Lsim xi = E max σi jδi j + ξ − min ρi jδi j , 0.0 (14)

Ldiff xi = E max max σi jδi j + ξ − ρi jδi j, 0.0 (15)

Combining (12) and (13), the objective function of the proposed
one-branch TDAE is

Lrestricted = Lrestricted
R xi + Lbatch‐triplet xi (16)

Finally, the model can be optimised by minimising (16) with the
MBGD method.

4 Experimental results
4.1 Dataset description and experiment setup

In this paper, the MSTAR dataset [3] is utilised to evaluate the
performance of the proposed model. There are ten distinct types of
ground vehicles in the dataset including the armoured personnel
carrier BMP-2, BRDM-2, BTR-60 and BTR-70; the tanks T-62 and
T-72; the rocket launcher 2S1; the air defence unit ZSU-234; the
truck ZIL-131; and the bulldozer D7. In this dataset, patches
centred on the target and surrounded by background clutter provide
full aspect coverage from 0° to 360° and different views at various
depression angles. The details of the ten targets used in the
experiments are listed in Table 1 including their type, serial
number, number of samples and their photographs and SAR image
examples are depicted in Fig. 6. 

A two-layer TDAE implemented as the one-branch structure is
utilised in the evaluation experiments. There are 1000 units in the
first hidden layer and 400 units in the second hidden layer which
are similar to the experiment of the ED-AE [32]. The trainable
parameters of the model are initialised by the Xavier scheme [34]
while the hyper-parameters are set as follows: the triplet margin
ξ = 0.02, the triplet loss weight α = 0.9, the intra-class penalty
weight β = 0.2 and the dropout fraction ρ = 0.25. In this paper,
both the linear SVM (LSVM) and non-linear SVM (NSVM) are
adopted as the classifier to evaluate the performance of the
proposed model. The first one is utilised to demonstrate the linear
separability of the learnt features while the NSVM is employed to
evaluate the best classification performance. To avoid the
fluctuations in the results caused by the random steps in model
initialisation and optimisation, each experiment is repeated ten
times and the average results are utilised for performance
evaluation. Before evaluating the proposed model with the dataset,
the normalisation is adopted to alleviate the amplitude variation in
target patches, which possibly conceals the differences between
targets and thus affect the performance of the learnt features.
Except for the normalisation, no other pre-processes such as
augmentation or target segmentation are applied.

To comprehensively assess the performance, the proposed
TDAE is tested under standard operating conditions (SOCs) and
extended operation conditions (EOCs). The SOC refers to that the
target configurations in the test set are the same as those in the
training set but with different aspects and depression angles. In the
EOC scenario, there are large differences between the training and
test sets including substantial variations in the signal-to-noise ratio
(SNR), resolution and version variants. In our experiments, the
proposed method is first tested on three similar targets, namely
BMP-2, BTR-70 and T-72, to validate its performance under SOC
and version variants. Subsequently, sensitivity analysis of the
hyper-parameters is discussed based on the three-target dataset.
The robustness of the proposed model under various conditions
including noise corruption and resolution variance is also evaluated
with the three-target dataset. Finally, experiments are conducted on
ten-class MSTAR data to evaluate the performance under the
extension of the target type.

Table 1 Details of the targets used in the experiment
Type Sl. no. Number of samples

17° Depr. 15° Depr.
BMP-2 9563 233 195

9566 232 196
c21 233 196

BTR-70 c71 233 196
T-72 132 232 196

812 231 195
s7 233 191

2S1 b01 299 274
T-62 A51 299 273
BRDM-2 E-71 298 274
BTR-60 K10yt7532 256 195
D-7 92v13015 299 274
ZIL-131 E12 299 274
ZSU-234 d08 299 274
Depr. denotes the depression angle.
 

Fig. 6  Photographs and SAR imagery examples of the MSTAR dataset for
model evaluation
(a) photographs of the ten targets in the MSTAR dataset which are BMP-2, BTR-70,
T-72, BTR-60, 2S1, BRDM2, D7, T62, ZIL131 and ZSU-234 from the top left to the
right bottom, (b) SAR images of the ten vehicles with the similar layout as (a)
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4.2 Evaluation on three-target classification

In this experiment, similar to the experimental setting in Deng et
al.’s paper [32], only the patches of BMP2-9563, BTR70-c71 and
T72-132 at depression angle 17° are used to train the TDAE. All
images of BMP2-c21, BMP2-9566, BMP2-9563, BTR70-c71,
T72-132, T72-s7 and T72-812 at depression angle 15° are used as
the test data to evaluate its performance with and without version
variants.

4.2.1 Discrimination capability analysis: The t-Distributed
Stochastic Neighbour Embedding (t-SNE) [35] method, which
maps the high-dimensional data to a low-dimensional space
according to their structure, is employed to illustrate the
discrimination capability of the features. As shown in Fig. 7, the
original data, the features learnt by the DAE and the TDAE are
projected into a two-dimensional (2D) space. The proposed method
significantly improves the classification capability of the learnt
features in comparing with the original DAE due to the modified
triplet restriction which pushes the samples belonging to different
classes away from each other and pulls the samples of the same
type together. Accordingly, the batch-based modified triplet
restriction guarantees large diversity in different classes and a
small diversity in the same class as demonstrated in Fig. 7. 

To quantitatively analyse its performance, the ratio of inter-
class distance to within-class distance (BWR) [32] is adopted. The
BWR is defined as

BWR = Dinter‐class
Dintra‐class

=
∑i = 1

c 1
N ∑ j = 1

Ni xi j − μi T xi j − μi

∑i = 1
c μi − μ T μi − μ

(17)

where Dintra‐class and Dinter‐class are the average intra-class distance
and the average inter-class distance in the feature space,

respectively; c is the number of classes; Ni is the number of
samples in the ith class; xi j is the jth sample of the ith class; μi is
the average feature vector of the ith class; and μ is the average
feature vector of all classes.

The BWR indicates the linear classification capability of the
learnt features which is proportional to the inter-class distance and
inversely proportional to the intra-class distance. The BWR values
of the original images and the features extracted from the DAE, the
ED-AE [32] and our proposed method are listed in Table 2.
According to Table 2, the BWR values of the original images and
the features extracted by the DAE have little difference indicating
that the DAE has limited contributions to the discrimination
capability of learnt features. Although the ED-AE gains a
significant improvement on the BWR value, the proposed model
has the highest BWR value. It means that the TDAE learns features
with a smaller intra-class distance and a larger inter-class distance
than the ED-AE due to the modified triplet restriction. 

4.2.2 Classification results: The average classification results of
the ten executions are presented in Table 3. In this paper, we
measure the performance through the probability of correct
classification (PCC), which is calculated through the number of
targets recognised correctly divided by the number of all the
targets. The results only with and without version variants are
listed in the fifth and sixth columns of the table. In addition, results
of the reference methods used for comparison in [32] are also listed
including directly using the original images, the classic AE and the
ED-AE with the LSVM classifier. 

As shown in Table 3, for the experiment without version
variants (i.e. under SOC), the proposed model has the highest
accuracy in comparison with the reference methods. Specifically,
the result obtained by the TDAE with NSVM is quite close to the
state-of-the-art results which are reported in the open-published
literature. Meanwhile, in the case with variants only, the proposed
method is considerably improved in comparison with the classic
AE and the ED-AE algorithms (11.72 and 1.88%, respectively),
indicating a better generalisation performance. The major reason is
that the proposed triplet restriction guarantees that the proposed
model can learn features with large inter-class diversity and small
intra-class distances. Besides, the dropout scheme, which prevents
overfitting caused by limited samples and the hierarchical structure
of the DL model, can also help the model learn robust information
of the targets in the version variants condition. The average
accuracies of these methods with all the test data are listed in the
seventh column of Table 3. It is found that even with LSVM, the
proposed model outperforms those reference methods. Especially,
when the NSVM classifier is applied to mapping the extracted
features into a high-dimension classification space, the average Pcc
of 98.67% is comparable with the state-of-the-art results obtained
by the complicated CNNs, with less computation complexity and
no DA.

Other features extraction methods are also compared with the
proposed method for further evaluation including the conventional
ones and the deep networks. The conventional methods for
comparison include the principal component analysis-kernel SVM
(PCA-KSVM) [4], the shadow-contour (SC)-based method [5], the
joint sparse representation-based method (JSRC) [7], the particle
swarm optimisation with Hausdorff distance (PSO-HD) [6], the
non-negative matrix factorisation (NMF) method [3] and the
decision fusion-based multi-scale scattering centre matching
(SCM) [9]. The deep networks utilised for comparison comprises
of the CNN with DA (DA-CNN) [29], the CNN with SVM (CNN 

Fig. 7  Visualisation of features learnt from the three-target dataset
(a) projection of the original data, (b), (c) projections of the features learnt by the DAE
and the proposed method, respectively

 

Table 2 BWR of the original images and the learnt features
Models Original image DAE ED-AE Proposed
BWR 1.03 1.10 2.50 3.02

 

Table 3 Classification results on the three-target dataset
Method BMP2, % BTR70, % T72, % Without variants, % Variants only, % Average Pcc, %
original image + LSVM 80.75 98.47 93.30 94.68 84.14 88.64
AE + LSVM 87.56 94.39 83.51 93.14 82.10 86.81
ED-AE + LSVM 94.21 93.88 94.16 97.08 91.94 94.14
TDAE + LSVM 92.37 98.92 96.90 98.64 93.82 95.32
TDAE + NSVM 98.30 99.54 98.74 99.66 97.93 98.67
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+ SVM) [30, 31], the A-Convnet [28], the restricted RBM (RRBM)
[12], the sparse AE pre-trained CNN (AE-CNN) [13] and the ED-
AE [32]. Among these methods, the A-Convnet and the CNN + 
SVM are implemented by our own code because they are not
evaluated with the three-target dataset in the open-published
literature. Besides, since the DA schemes are applied to provide
sufficient training samples in both the CNN + SVM and the A-
Convnet, their results with and without DA are all evaluated.
Moreover, in the CNN + SVM method, the input data should be
rotated according to the estimated azimuth angles. However, in the
evaluation experiment, the actual values of the aspect angle are
directly used ignoring the errors caused by angle estimation.
Consequently, the actual Pcc of the CNN + SVM model would be
lower than that presented in the experiment as reported by Wagner
[31].

The accuracies of all the methods are shown in Fig. 8. With the
linear classifier, the features learnt by the proposed method have a
better classification capability than most conventional methods
(e.g. the JSRC, the SC-based method, the PSO-HD method, the
NMF method and the PCA-KSVM) because of the modified triplet
restriction and the dropout scheme. Comparison to the deep
networks including the DA-CNN, the RRBM, the AE-CNN and the
ED-AE also indicates that the proposed model outperforms most of
the DL models which have specialised restrictions for finding
discriminative features. Even compared with the SCM, the CNN + 
SVM and the A-Convnet that have achieved the state-of-the-art
results, the proposed method with NSVM obtains a comparable
result – a bit lower average accuracy, no requirement of DA or
model assumption and much less computation complexity. 

Among these methods, the SCM confronts the difficulties of
establishing highly vivid 3D computer-aided design models of
targets and devising electromagnetic (EM) code for simulating
accurate backscattering data. Even now they are still challenging
tasks and sometimes infeasible in some remote sensing
applications. Besides, the SCM method has the highest
computation complexity due to the EM code-based SCM
construction step and the complicated parameter estimation
algorithm which iteratively estimates the parameters of scattering
centres of a target. All these prevent it from being applied in many
practical earth observation tasks. For the A-Convnet and the CNN 
+ SVM, their outstanding performance mainly relies on the DA
operations as demonstrated by the accuracies achieved without DA

step in Fig. 8. Although their DA processes do improve the
performance, they will induce certain problems including
amplifying the sampling biases and high computation complexity.

Further evaluation on the processing time of the proposed
method, the CNN + SVM and the A-Convnet are conducted. The
experiment is conducted on the PC platform with an Intel
i7-7200QM, 16 GB random access memory and an NVIDIA
GTX960M (fourth-generation memory) graphics processing unit
(GPU) supported by the 64 bit Windows 10. All the models are
developed in Python v3.5 supported by the Google TensorFlow
v1.4.0 and CUDA v8.0. The MBGD optimisation algorithm is
adopted for model training and the batch size is 64 for both the A-
Convnet and CNN + SVM. The maximum training epoch is 500
and the early-stopping scheme is enabled to terminate the training
if the improvement of the training loss is less than the threshold.
The average times of pre-processing and model training are
presented in Table 4. Obviously, the proposed method consumes
much less time than the rest two DL networks in both the pre-
processing and the training steps. The major reason is that the
proposed method only requires limited pre-processes and training
samples. Besides, the fully connected layers of the proposed model
also have less computation complexity than the convolutional
layers of the two methods. 

4.2.3 Analysis of training set size: Furthermore, the experiment,
which evaluates the model performance with limited training
samples, is conducted by randomly removing a part of samples in
the training set. In this experiment, only 1/n images are randomly
selected from the dataset as training samples with n varying from
one to ten. The average accuracies and their standard deviations
with both the LSVM and the NSVM are presented in Fig. 9.
Besides, the results of the CNN + SVM and the A-Convnet are also
depicted in Fig. 9 for comparison. As shown in this figure, the
accuracies of all the models reduce when the number of training
samples decreases. However, the accuracies of the CNN + SVM
and the A-Convnet decrease more rapidly than the proposed model.
The Pcc of the CNN + SVM falls below 90% when only 1/4
samples in the dataset are used as training samples, while for the
A-Convnet critical value of n is 1/5. For the proposed model, even
when only 1/6 samples (i.e. about 116 samples) are utilised to train
the network which is considered as an extreme case for most
machine learning tasks, the two variants of the proposed model still
provides accuracy higher than 90%. It demonstrates that the
proposed model has a robust representation learning capability for
limited training data to some extent. 

4.3 Sensitivity analysis of hyper-parameters

In the proposed model, there are four additional hyper-parameters
in comparison with the classic AE: the triplet margin ξ, the weight
of triplet loss α, the weight of the intra-class distance penalty β and

Fig. 8  Performance comparison with different methods
 

Table 4 Evaluation experiments of processing time
Method Average processing time, s

Pre-process Model training
TDAE 0.21 274.17
A-Convnet 0.30 635.63
CNN + SVM 6.21 391.79
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the dropout rate ρ. Experiments are conducted to evaluate the
manner, in which they affect accuracy. Both the average accuracies
and the corresponding standard deviations are used for evaluation.

The dropout rate ρ represents the probability of each unit being
dropped in the network, which varies from 0 to 1. Improper
dropout rate, neither too small nor too large, will lead to
performance degradation because the former one cannot prevent
overfitting while the latter one will remove too many units
resulting in loss of useful information. The manner, in which the
dropout rate affects the classification is tested and presented in

Fig. 10 by varying the dropout rate from 0.05 to 0.9 while keeping
the rest of the parameters unchanged. According to the influence
curves of the two variants, the optimal dropout rate is 0.25.
According to Fig. 10, the variation of the dropout rate in a small
neighbourhood of the optimal value does not affect the accuracy
much. However, for the LSVM, setting the dropout rate neither
smaller than 0.1 nor larger than 0.5 will result in an accuracy below
90% with fierce fluctuations due to overfitting and loss of
information. For the NSVM, the dropout rate will fall below 90%
with fierce fluctuation when the dropout rate is larger than 0.7. 

The triplet margin ξ is a slack parameter determining the
minimum value that the inter-class distance is larger than the intra-
class distance. The maximum value of the triplet margin is usually
smaller than 1.0 for normalised inputs. Accordingly, the binary
search method is employed to analyse the variation of the
classification accuracy with different triplet margins ξ ∈ 0.001, 1 ,
which is shown in Fig. 11. As presented in this figure, the optimal
value of the triplet margin is 0.02. Neither too large margin nor too
small margin will result in a much lower classification accuracy
with either LSVM or NSVM. That is because a large margin will
result in fierce fluctuations in triplet loss which affect the
convergence of the model while too small margin provides a weak
restriction to the learnt features and thus deteriorates the
performance. 

In the objective function of the TDAE, there are three parts of
losses, i.e. the modified reconstruction loss, the batch-triplet loss
and the intra-class distance penalty. The reconstruction loss
guarantees that the important information on the targets will be
preserved in the learnt features. The triplet loss guarantees that the
learnt features will have low inter-class coupling while the intra-
class distance compels the model to learn features with higher
intra-class cohesion, meaning a small divergence of samples from
the same target in the feature space. The weight of the triplet loss α
and the weight of the intra-class distance penalty β are parameters
which balance the learning object among the three parts. Both of
them have specific influences on the classification results. Herein,
we will give a detailed discussion on the value of the two
parameters.

Fig. 12 shows the varying classification results with different
weights α. As shown in Fig. 12, the optimal value of α is 0.9.
When the weight increases or decreases, the classification rate
reduces. If the weight is larger than 1.3, the classification rates of
both TDAE + LSVM and TDAE + SVM reduce slowly, along with
slight fluctuation, indicating that the triplet loss becomes the major
restriction of the model which is optimised by the backpropagation
process. When the weight is smaller than 0.3, the accuracy of the
TDAE + LSVM quickly reduces below 90% because the triplet loss
only has a weak restriction on the objective function. However, the
results of the TDAE + NSVM are still larger than 90% due to its
non-linear projection capability. Specifically, when α = 0 which
means that the triplet loss will no longer restrict the objective
function, the classification result of the TDAE + LSVM is 89.00%,
which is quite close to the 87.56% obtained by the AE [32]. This
phenomenon demonstrates that the batch-triplet loss is the major
restriction that guarantees the model's capability of learning
discriminative features. The 1.44% improvement in the average
classification rate indicates that both the modified reconstruction
loss and the intra-class distance penalty also provide some
restrictions to the model. 

Fig. 13 presents the relationship between the varied weight β
and the accuracies obtained by LSVM and NSVM. According to
this figure, the optimal value of β is 0.2. When β is larger than the
optimal value, the classification rate reduces indicating that the
balance between the reconstruction loss, the triplet loss and the
intra-class distance penalty is broken. However, since in the
proposed model the major restriction term is the batch-triplet loss,
the reduction is quite slow as illustrated by the curves. When β is
smaller than the optimal value, it will have fewer contributions to
the objective function and the classification performance has a
slight degradation. Specifically, when β = 0 which means that the
intra-class distance penalty will be removed from the objective
function, the classification rates obtained by LSVM and NSVM
reduce to 92 and 94.9%, respectively, which are more than 3%

Fig. 9  Comparison of classification results when 1/n samples are
randomly selected to train the model

 

Fig. 10  Classification accuracy affected by ρ
 

Fig. 11  Classification accuracy due to different ξ
 

Fig. 12  Classification results with varying α
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lower than the best result. It demonstrated the effectiveness of the
intra-class distance penalty for learning discriminative features. 

Moreover, in the proposed batch-based model, the batch size is
also an important parameter that can significantly affect the
classification results since the batch-based triplet loss is computed
based on all features in a batch. Insufficient samples in the batch
can result in overfitting while a large batch will result in a slow
convergence speed, a huge amount of computation and the
requirement of large memory resources. Typically, the batch size
can usually be 32, 64, 128 or 256. The classification results
obtained by the two variants with different batch sizes are
presented in Fig. 14. When the batch size is smaller than 64, the
average accuracy obtained by the LSVM is smaller than 90% with
a large standard deviation caused by randomly shuffling during the
training process. Similar fierce fluctuations caused by randomly
shuffling can also be observed from the results obtained by the

NSVM though the average result is higher than that obtained by the
LSVM. When the batch size is larger than 64, the average accuracy
obtained by the LSVM increases to 94% with a small fluctuation,
which is close to the best result of 95.32%. The optimal batch size
in this experiment is 256 and no larger batch is evaluated because
the larger batch will lead to the ‘out of memory’ error due to the
limited memory of the GPU used in the experiment. 

4.4 Classification under noise corruption

The MSTAR images have an SNR over 30 dB which is too ideal
for classification. However, in SAR ATR tasks, serious noise is a
major factor causing performance deterioration. Therefore, SAR
images corrupted by different levels of SNR are simulated to
evaluate the model's robustness to noise. The noise-corrupted
images are generated by adding Gaussian noise to the frequency
domain of the MSTAR images [8]. The original MSTAR images
are considered noise free and different levels of noises are added
according to the SNR defined as

SNR dB = 10 log10
∑h = 1

H ∑w = 1
W f h, w 2

HWσ2 (18)

where f h, w  is the complex frequency at h, w ; W and H are the
numbers of bins in the range and azimuth frequency, respectively;
and σ2 is the variance of the noise.

The noise is added to the frequency data and the noise-
corrupted images are obtained by transforming the frequency data
back to the spatial domain. Fig. 15 shows some images with
different SNR levels. The results of the two variants as well as the
CNN + SVM and the A-Convnet at SNR varying from 10 to −10 
dB are evaluated and plotted in Fig. 16. In the experiment, the
CNN + SVM directly utilises the actual azimuth angle for aspect
angle rotating ignoring the estimation error caused by the noised
images. Accordingly, the actual accuracy of the CNN + SVM
should be lower than that presented in Fig. 16. 

With the deterioration of the SNR, the Pcc obtained by each
model experiences a decrease with increasing standard deviations
and the TDAE + NSVM achieves the highest accuracy at every
SNR level. When the SNR is higher than 0 dB, in which condition
the shapes and characteristics of the targets are not seriously
affected by the noise, the classification rates of all the models are
close to 90% and the TDAE + NSVM achieves the highest
accuracy of 91.8%. Even when the SNR is −5 dB that the targets
can only be partly observed in the images as shown in Fig. 15d, the
classification rate of the TDAE + NSVM is 82.6% that is higher
than other reference models, which demonstrated that the proposed
method is robust to noise interruption in comparison with the
reference models.

4.5 Classification under resolution variance

Ideally, the resolution of SAR imagery is only determined by the
bandwidth of transmitting wave and the synthetic aperture angle.
However, due to the instability of the sensors, the resolution of the
measured SAR images is possible to be at variance with the
theoretical values. Moreover, it is infeasible to train models
corresponding to every possible resolution. Consequently, the
robustness of resolution variation is also an important factor for
model evaluation.

In this section, the performance of the two variants of the
proposed model, the CNN + SVM and the A-Convnet are evaluated
with SAR images whose resolution deteriorated from 0.3m × 0.3 m
to 0.7m × 0.7 m. The SAR images with varied resolutions are
simulated by extracting the low-frequency sub-band of the original
images. To generate images with the same size as the original data,
the sub-band data are resampled by zero padding in the frequency
domain and transformed back to the spatial domain. Fig. 17
presents some images at a different resolution. The experimental
results are plotted in Fig. 18. As shown in this figure, all the DL
models are not seriously affected by the resolution deterioration.
Even when the resolution is 0.6 × 0.6 m2 (i.e. twice lower than the
original images), their accuracies are still higher than 90%.

Fig. 13  Classification results with varying β
 

Fig. 14  Classification results with different batch sizes
 

Fig. 15  MSTAR data corrupted by different levels of noises
(a) 10 dB, (b) 5 dB, (c) 0 dB, (d) −5 dB, (e) −10 dB

 

Fig. 16  Classification results at different SNR levels
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However, among these DL networks, the proposed model with the
NSVM gains the highest accuracy in comparison with other
reference models when the resolution is worst than 0.4 × 0.4 m2

demonstrating its excellent robustness in the case of resolution
variance.

4.6 Evaluation on ten-target classification

Further evaluation of the proposed method is conducted on the ten-
target dataset which consists of all the ten types of targets listed in
Table 1. Similar to the experiment with the three-target dataset,
images acquired at 17° depression angle are utilised as training
samples while all the samples obtained at 15° depression angle
construct the test set. Besides, only the data of BMP2-9563,
BTR70-c71 and T72-132 are used as the samples of the BMP-2,
BTR-70 and T-72 to construct the training dataset. However, in the
test dataset, images of all serial numbers (i.e. version variants) are
used to test the performance of the proposed method. In addition,
to avoid the fluctuations caused by the random steps in model
initialisation and optimisation, the experiment is repeated for ten
times and the average accuracy is utilised for performance
evaluation.

Besides, the proposed method is also compared with several
reference methods including the original AE with LSVM (AE + 
LSVM), the NMF method [3], the ED-AE [32], the A-Convnet
[28] and the CNN + SVM [30, 31]. Among these methods, the A-
Convnet and CNN + SVM methods are implemented by our own
code. The average accuracy of the proposed methods and the
results of the reference methods are listed in Table 5. According to
the results, the classification accuracy of the proposed method is
higher than most of the reference methods including the AE, the
NMF and the ED-AE. When the NSVM is utilised as the classifier,
the Pcc of the proposed method is even comparable with the state-
of-the-art results. Although both the A-Convnet and the CNN + 
SVM have higher accuracy than the proposed method, they all

require complex DA process and have a higher computation
complexity. 

5 Conclusions
In this paper, a new DAE restricted by the modified triplet loss is
proposed for SAR ATR to take the full advantage of limited
training samples. The major contributions of this paper include:

(i) a three-branch DAE restricted by the modified triplet loss which
combined the semi-hard triplet loss with the intra-class distance
penalty;
(ii) a simplified version of the proposed three-branch model by
devising a batch-based triplet restriction which combines the semi-
hard positive triplet loss, the semi-hard negative triplet loss and the
intra-class distance penalty; and
(iii) a modified reconstruction loss, in which the original inputs are
replaced by the ILS filtered data to suppress clutter and speckle in
the background.

The MSTAR dataset is utilised to evaluate the performance of the
proposed model. The proposed method is evaluated under both
SOC and several EOCs with the three-target data including noise
corruption, resolution variants and version variants. Further
evaluation experiment is also conducted with the ten-target data
(with version variants) in the MSTAR dataset. Besides, the
significant parameters of the proposed model are also discussed.
Feature visualisation and evaluation experiments both
demonstrated that the proposed method outperforms most
conventional and DL algorithms and achieved comparable
accuracy with the state-of-the-art results without DA and much
additional computation.

Fig. 17  MSTAR data at different resolutions
(a) 0.3 m × 0.3 m, (b) 0.4 m × 0.4 m, (c) 0.5 m × 0.5 m, (d) 0.6 m × 0.6 m, (e) 0.7 m × 0.7 m

 

Fig. 18  Classification results at different resolutions
 

Table 5 Classification results on the ten-target dataset
Methods 2S1, % BMP-2, % BRDM-2, % BTR-60, % BTR-70, % D7, % T-62, % T-72, % ZIL-131, % ZSU-234, % Average, %
TDAE + LSVM 91.97 94.62 92.38 94.36 95.80 96.27 93.16 99.22 95.50 97.81 95.46
TDAE + NSVM 96.80 98.41 97.53 98.29 98.64 98.78 97.52 99.77 98.34 99.23 98.47
AE + LSVM 91.61 82.45 95.62 87.18 90.82 97.08 94.51 67.35 92.34 98.91 87.04
NMF 100 91.01 97.91 94.87 97.87 98.32 96.38 94.70 97.27 95.54 94.20
ED-AE 93.80 87.90 96.72 91.79 92.86 98.91 94.14 79.55 94.53 99.64 91.29
A-Convnet 98.54 98.81 98.91 96.92 99.49 98.91 100.00 99.66 99.27 98.91 99.03
CNN + SVM 97.81 99.83 100.00 98.97 99.49 99.64 99.27 99.83 98.91 99.27 99.41
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